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The problem of reconstructing an object from diffraction data that has been

incoherently averaged over a discrete group of symmetries is considered. A

necessary condition for such data to uniquely specify the object is derived in

terms of the object support and the symmetry group. An algorithm is introduced

for reconstructing objects from symmetry-averaged data and its use with

simulations is demonstrated. The results demonstrate the feasibility of structure

determination using a recent proposal for aligning molecules by means of their

anisotropic dielectric interaction with an intense light field [Spence et al. (2005).

Acta Cryst. A61, 237–245].

1. Introduction

If one is primarily interested in molecules, then crystals are

merely a convenient alignment mechanism for improving the

signal level in a diffraction experiment. The near-perfect

alignment of molecules within a crystal, however, comes at a

cost. In a crystal, alignment is achieved by introducing trans-

lational periodicity as well, and this restricts the sampling of

the diffraction pattern to the crystal’s reciprocal lattice. A

more complete sampling of the diffraction pattern is advan-

tageous for constraining the phases in the pattern (Millane,

1990; Sayre & Chapman, 1995). This has led to the suggestion

of alternate alignment mechanisms (Spence & Doak, 2004),

where not only would the molecules lack translational peri-

odicity but, by arranging the molecular separations to be

outside the range of coherence of the illuminating radiation,

all intermolecular interference would be eliminated. If such an

‘incoherent alignment’ mechanism were realized, the scattered

radiation would form the diffraction pattern of an individual

molecule and be signal enhanced in proportion to the number

of molecules in the illuminating beam.

One of the leading candidates for an incoherent alignment

mechanism is the interaction of an elliptically polarized light

field with the anisotropic molecular polarizability (Larsen et

al., 2000). As already noted (Spence et al., 2005), this scheme

suffers from a disadvantage that the energetics of the mol-

ecular orientation is degenerate with respect to a discrete

symmetry group of order four generated by � rotations about

the principal axes of the polarizability tensor. The scattered

radiation from many molecules will therefore be an average of

four, generally distinct, diffraction patterns, all related by �
rotations. An incoherently averaged pattern will have no

simple (linear) relationship to the scattering density: in

particular, it does not correspond to the symmetry average of

the scattering density.

Since an incoherently symmetry averaged diffraction

pattern contains less information than the original pattern,

the question of whether such data uniquely determine the

scattering object is an important one. The sampling

theorem places limits on the information contained in the

diffraction pattern, and thus the size of the group that will

yield to a reconstruction from incoherently averaged data

will be limited as well. We obtain a practical uniqueness

criterion in terms of the action of the group on the object

support. When this criterion is satisfied, we show how the

molecule’s scattering density can be reconstructed from a

symmetry-averaged diffraction pattern by a relatively

straightforward modification of a projection-based phase-

retrieval algorithm.

We note that the problem addressed here is related to other

problems in crystallography where averaged diffraction data

are measured. In particular, it is closely related to fiber

diffraction analysis where, as a result of random rotations of

the (oriented) scattering objects about an axis, one measures

the cylindrical average of the diffracted intensity (Millane,

2001). The relationship to fiber diffraction is discussed in x5.

We note also, as a matter of interest, that the problem we

consider is in some sense opposite to the phenomenon that

occurs with noncrystallographic symmetry in crystals, where

the molecular symmetries effectively augment the under-

sampled (single-particle) diffraction pattern from the crystal

(Millane, 1993).

In the next section, we determine a necessary criterion for

uniqueness of reconstructions from symmetry-averaged

diffraction data. In x3, we describe an algorithm for recon-

structing the scatterer from such data and, in the following

section, we illustrate its efficacy using simulations. The results

are discussed in the final section in relation to phase-retrieval

problems in crystallography in general and to fiber diffraction

analysis.



2. Uniqueness

A first step in assessing the feasibility of reconstruction is to

determine whether the object is uniquely specified by the

available data in the absence of noise and without the benefit

of additional a priori knowledge (positivity etc.) aside from

knowledge of the support. For the usual phase problem, this

has been extensively studied. For sampled diffraction data

from crystals, uniqueness is related to the size of the overlap

region of aliased autocorrelation supports (Millane, 1993).

The latter depends on the size and shape of the molecular

support (molecular envelope) and makes more precise

previous estimates based on the ratio of the molecular volume

to the unit-cell volume (Arnold & Rossmann, 1986). The

presence of noncrystallographic symmetry also improves

uniqueness (Millane, 1990, 1993). For continuous diffraction

data from single particles, the phase problem has been shown

to be overdetermined from knowledge of the complete

continuous diffraction amplitude (Millane, 1996; Miao et al.,

1998). The data redundancy increases with dimensionality of

the problem (Millane, 1996). Given these results, we might

anticipate that some averaging of the diffraction data can be

tolerated without loss of uniqueness. We consider here these

issues for continuous diffraction data as a function of support

region of the scatterer and when the diffraction pattern has

been incoherently averaged with respect to a discrete group G.

We let �ðrÞ denote the scattering density of the object at the

direct-space point r and ~��ðqÞ its Fourier transform, i.e. the

diffraction pattern, where q is position in Fourier space. The

primary source of data is the intensity of the diffraction

pattern averaged over a discrete group G, i.e.

IðqÞ ¼
P
g2G

j ~��ðgqÞj2: ð1Þ

Symmetry averaging reduces the information in the data since

the intensity is constant on symmetry orbits: IðqÞ ¼ IðgqÞ for

all g 2 G. The known or estimated object support, a set in

direct space, is denoted by S.

In order to better see the relationship between the degrees

of freedom in the reconstruction and the available data, we

assume that the diffraction pattern is measured up to a

maximum spatial frequency (resolution) that corresponds,

after rescaling, to direct-space samples r on the integer grid

Z
N , where N is the dimensionality. The Fourier transform ~��ðqÞ

is then spanned by the set of linearly independent basis

functions expfi2�q � rgr2S, where the support S is a finite subset

of ZN and q is the continuous transform variable on the N-

torus. In this context, the sampling theorem is the statement

that the coefficients of the Fourier transform basis are

uniquely determined by the values of the Fourier transform at

a set of jSj samples, where jSj is both the size of the basis and

the area (volume) in pixels of the support. The locations of the

Fourier samples are largely arbitrary, although numerical

stability is improved by homogeneous distributions on the

torus.

The diffraction intensity, j ~��ðqÞj2, is spanned by the basis

expfi2�q � rgr2SA
, where SA ¼ S� S is the support of the

autocorrelation of �ðrÞ. The notation S� S denotes the set of

all difference vectors between points in S (the Minkowski sum

of S and �S, where �S is the inversion of S through the

origin). The coefficients of the basis functions for fr;�rg 2 SA

are not independent, being related by complex conjugation.

From this we infer that the diffraction intensity is completely

specified by jS� Sj=2 coefficients that can be determined, by

the sampling theorem, from the same number of samples. In

the case of complex-valued objects, where the autocorrelation

coefficients are complex, the real intensities at q and �q

represent two independent real-valued samples. On the other

hand, if the object and autocorrelation are real-valued, then

the data provided by a Friedel pair collapses to a single real

number (since the intensities are equal). We can summarize

both cases, complex or real objects, by the statement that an

object comprising jSj independent (complex/real) coefficients

is constrained through its diffraction intensity to have a

particular set of jS� Sj=2 autocorrelation coefficients of the

same type.

We first consider the question of uniqueness in the absence

of symmetry averaging. If object support and diffraction

intensity are the only constraints on the reconstruction, then a

necessary condition for uniqueness is that the number of

constraints exceeds the number of free parameters. From the

remarks above, this criterion corresponds to the inequality

jS� Sj=2> jSj, since constraints and free parameters are

either both complex or both real. When this inequality is

violated, then multiple reconstructions are consistent with the

available data.

A useful measure of the sufficiency of the constraints in a

reconstruction is the constraint ratio, �, where

� ¼
number of independent autocorrelation coefficients

number of independent object coefficients

¼
jS� Sj

2jSj
: ð2Þ

Values of � less than 1 or only slightly greater than 1 are cause

for concern that the reconstruction may not succeed without

additional constraints (e.g. positivity). On the other hand, if �
exceeds 1, then the degree of nonuniqueness in a recon-

struction will be very limited. In the usual case, this includes

only translation or inversion of the object within the support

(for loose or centrosymmetric supports) and a global phase

rotation of the values. For pathological instances (e.g. homo-

metric objects), there can be additional forms of nonunique-

ness when �> 1. As a practical matter, we can expect that the

performance of reconstruction algorithms is improved, all

other things being the same, when � is large.

It is well known that reconstructions in one dimension

(N ¼ 1), with one connected support, are not unique. This is

an instance of the marginal case � ¼ 1, where almost any

additional constraint (e.g. positivity) will restore uniqueness.

A direct consequence of the Brunn–Minkowski theorem

(Matousek, 2002), applied to subsets of RN corresponding to

the discrete sets S and �S, is the inequality

� ¼
jS� Sj

2jSj
� 2N�1; ð3Þ
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where equality holds when S is convex and centrosymmetric

(S ¼ �S). It has been observed that reconstructions are easier

when S 6¼ �S (Crimmins, 1987) or when S is not convex, as in

a support with separated components (Fienup, 1987). This

supports our contention that � is relevant for the performance

of algorithms. In two dimensions, for example, a rectangular or

elliptical support has � ¼ 2, while any triangle has � ¼ 3.

Likewise, if support S1 has �1 as its constraint ratio, then

two sufficiently separated copies S2 of S1 has �2 ¼ ð3=2Þ�1.

For n sufficiently separated copies of S, without any

symmetry relationships between their separations,

�n ¼ ðn� 1þ 1=nÞ�1. Finally, � can be arbitrarily large, as

in the case of a support with the shape of a thin circular

(spherical) shell, for which the autocorrelation support is the

whole interior of a circle (sphere), or for the n separated

supports described above when n!1. We note that, except

in rather unusual cases, the molecular envelopes of globular

proteins and other macromolecules tend to be approximately

convex and centrosymmetric, and therefore in these cases

� � 2N�1, or � � 4 in three dimensions.

The effect of symmetry averaging is to reduce the number

of independent autocorrelation coefficients, and thereby

reduce the constraint ratio �. We examine two situations: the

case of supports that can discriminate between some elements

of the group orbit (S 6¼ gS for some g 2 G), and the more

likely situation, where the support is invariant with respect to

the action of G, either because the object itself is highly

symmetric or the estimates of the support shape are imprecise.

The first situation is best explained using an example. In

Fig. 1, we consider a rectangular support with dimensions

a and b (b � a), which already possesses ambiguity with

respect to inversion through the origin, denoted by i. As an

example of G, we take the group generated by the mirror m

oriented at 45� with respect to the rectangle edges. Since the

support is not invariant with respect to m, the support

constraint selects the two-elements orbit generated by i. Also

shown in Fig. 1 is the support of the autocorrelation and its

image under G. The pixels in the shaded region represent the

independent autocorrelation coefficients that can be measured

by sampling the symmetry-averaged diffraction pattern. By

taking the ratio of the area of this region (independent data),

að2b� aÞ, and the area of the support (free parameters), we

obtain � ¼ 2� a=b. When b> a, it should be possible to

reconstruct the object without additional constraints since

�> 1. The situation is better for a larger aspect ratio, although

� is bounded by �< 2, i.e. the value for any rectangle without

averaging. For b ¼ a, or square support, we have � ¼ 1 and

uniqueness is marginal, i.e. not unique in practice in the

presence of noise and without additional constraints. In the

latter case, the averaging has reduced � from 2 to 1.

Now consider the situation where the support is invariant

with respect to the group G. By counting the number of

independent coefficients in the support of the autocorrelation,

reduced by the size of the orbits under G, and forming the

ratio with the number of free parameters in the support of the

object, we obtain

� ¼
jS� Sj

jhi;GijjSj
; ð4Þ

where jhi;Gij is the order of the group generated by inversion

in the origin and G [equation (3) is recovered when

hi;Gi ¼ hii]. This sets a limit on the size of the group that can

be tolerated in a reconstruction from symmetry-averaged

data. Note that, even in the case of uniqueness, the solution

will be unique only up to a jhi;Gij-fold ambiguity of

symmetry-related objects. The least favorable situation arises

for convex centrosymmetric supports since these saturate the

Brunn–Minkowski bound (3), in which case, using (3) and (4),

uniqueness requires that

jhi;Gij< 2N: ð5Þ

When G includes i, the uniqueness criterion reduces to

jGj< 2N; ð6Þ

i.e. less than eightfold averaging in the three-dimensional case.

If G does not include i, then jhi;Gij ¼ 2jGj and uniqueness

requires

jGj< 2N�1; ð7Þ

i.e. less than fourfold averaging in the three-dimensional case.

The presence of additional a priori information will relax these

conditions.

3. Reconstruction algorithm

In cases for which the degree of averaging admits a unique

solution, we now address how to find that solution. For this

purpose, we use the difference map algorithm (Elser, 2003a,b),

a general-purpose iterative method for finding a point in a

Euclidean space that lies in the intersection of two constraint
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Figure 1
A rectangular support (left) and symmetry averaging by a mirror at 45�

with respect to the edges of the support rectangle. The autocorrelation
support, after symmetry averaging, is shown on the right (union of two
doubled rectangles). Independent autocorrelation coefficients are
represented by the shaded region; all others are related by the group
of order four generated by two orthogonal mirrors (dashed lines). If the
dimensions of the support rectangle are a and b (b> a), then the area of
the shaded region is að2b� aÞ. Dividing this by the area of the support,
ab, we obtain � ¼ 2� a=b.



sets. The key components of the algorithm are the two

projections that, given an arbitrary input, return as outputs the

nearest points on the corresponding constraint sets.

The first projection implements the support constraint:

PS : �ðrÞ 7! �0ðrÞ ¼
0 if r =2 S,

�ðrÞ otherwise,

�
ð8Þ

where S is the known or estimated support. Positivity (of real-

valued objects), if it applies, is imposed by the projection

Pþð�ðrÞÞ ¼ max ð0; �ðrÞÞ. Since the support and positivity

projections commute, they may be combined into a single

projection PSþ. Although we consider only support and

positivity constraints here, other direct-space constraints are

easily incorporated within the same formalism.

The second projection, PI , implements the constraint

provided by the diffraction intensity and is simple when

expressed in terms of the Fourier transform of the scattering

density, ~��ðqÞ. The projection computation therefore takes the

form

PI ¼ F�1 ~PPIF; ð9Þ

where F is the discrete Fourier transform from the direct-

space grid to the Fourier space grid. The projection ~PPI acts on
~��ðqÞ and its distance-minimizing property in Fourier space

extends to the direct-space density because F is a distance-

preserving unitary transformation. Our main task is to deter-

mine the form of ~PPI in the case of symmetry-averaged

diffraction data.

Since we have a discrete group G that averages the

diffraction intensity, we consider the action of ~PPI on a

symmetry orbit f ~��ðgqÞgg2G:

~PPI : ~��ðgqÞ 7! ~��0ðgqÞ: ð10Þ

For almost all q, the size of the symmetry orbit will be the

order of the group, jGj. The constraint is given byP
g2G

j ~��0ðgqÞj2 ¼ IðqÞ; ð11Þ

where IðqÞ is the symmetry-averaged intensity. The output of
~PPI satisfies (11) while also minimizing the distanceP

g2G

j ~��ðgqÞ � ~��0ðgqÞj2: ð12Þ

The set of input numbers f ~��ðgqÞgg2G is a vector in a 2jGj-

dimensional real vector space and the geometrical content of

(11) and (12) corresponds to finding the nearest vector

f ~��0ðgqÞgg2G that lies on a ð2jGj � 1Þ-dimensional sphere of

radius ½IðqÞ�1=2. The required projection is thus a simple

rescaling of the input vector:

~PPIð ~��ðgqÞÞ ¼ ~��0ðgqÞ ¼
IðqÞP

g2G j ~��ðgqÞj2

" #1=2

~��ðgqÞ: ð13Þ

We now use the two projections PS and PI in the difference

map D with � ¼ 1 (see Elser, 2003a), for which it reduces to a

generalization of Fienup’s hybrid input–output map (Fienup,

1982),

D : � 7! �0 ¼ �þ�ð�Þ; ð14Þ

where

�ð�Þ ¼ PSð2PIð�Þ � �Þ � PIð�Þ: ð15Þ

Application of (14) to an object � produces a new object �0

and represents one iteration of the reconstruction algorithm.

Repeated iterations drive the algorithm towards a fixed point

of D where �ð�Þ ¼ 0. Once arrived at a fixed point, the

reconstruction is successful since the intensity estimate,

�I ¼ PIð�Þ; ð16Þ

is consistent with the support estimate

�S ¼ PSð2PIð�Þ � �Þ: ð17Þ

The detailed form of D (for arbitrary �) is designed to maxi-

mize the attraction of the fixed points (Elser, 2003a). As a

result of noise, of course, the algorithm will not converge

exactly to a fixed point but, if k�ð�Þk is small, then �I � �S

and either one can be taken as the best estimate of the object.
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Figure 2
Top: object of study in a two-dimensional reconstruction experiment.
Middle: diffraction pattern. Bottom: diffraction pattern averaged with
respect to a diagonal mirror, as in Fig. 1. Diffraction patterns are
displayed on a log scale.



If the problem has a unique solution, then this reconstruction

will correspond to the true object. Of course, if the problem

is not unique, then the algorithm may find a solution that

satisfies the constraints but does not correspond to the true

object.

It is worth pointing out that � itself is not an estimate of the

solution, a mistake that has been made by a number of

investigators.

4. Numerical experiments

We present here numerical simulations for two cases that

illustrate the uniqueness results and the reconstruction

algorithm described above. The first is in two dimensions and

for the case where the object support is not invariant under

the action of the group G. The second is in three dimensions

and for the case where the object support is invariant with

respect to G. Since the point of these exercises is to demon-

strate the effects of symmetry averaging, we did not allow for

noise, missing central data and other experimentally relevant

factors. We believe that these factors will only compromise the

results with ideal conditions when the constraint ratio is close

to marginal (� � 1).

The object of the first experiment, a non-negative letter ‘m’

on a 19� 29 pixel support, is shown in Fig. 2. The object was

embedded on a 64� 64 grid and its diffraction pattern

calculated, also on a 64� 64 grid, and is shown together with

its symmetry average with respect to a diagonal mirror in

Fig. 2. This example corresponds to the situation described in

x2 for a rectangular support that is not invariant under the

action of the group generated by the mirror. The calculation of

the constraint ratio is shown in the caption to Fig. 2 and gives

� � 1:33. Since �> 1, there is sufficient information for a

unique reconstruction. It is essential that the diffraction

intensity is sampled at sufficient density that the number of

symmetry-independent samples equals, or preferably exceeds,

the number of independent autocorrelation coefficients. In

this case, ð64� 64=4Þ ¼ 1024> ð1:33� 19� 29Þ ¼ 732, so

that this condition is satisfied with a ratio of 	 1:4. Recon-

struction was attempted using the symmetry-modified inten-

sity constraint projection (13), and the standard support

projection without positivity. The difference-map error metric

k�k versus iteration is shown in Fig. 3. Convergence was

obtained after about 500 iterations and the reconstruction is
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Figure 3
Top: Difference map error metric k�k versus iteration. Bottom: Object
reconstructed from symmetry-averaged data.

Figure 4
A three-dimensional object (top row) and its reconstructions (lower rows). Each horizontal row of 12, 12� 12 pixel arrays, represents one three-
dimensional density sampled on a 123 grid. The four reconstructions correspond to the conditions given in Fig. 5. The second row is for jGj ¼ 1, the third
for jGj ¼ 2, the fourth for jGj ¼ 4 with positivity, and the last row for jGj ¼ 4 without positivity.



also shown in Fig. 3. In this example, the support cannot

discriminate between the object and its inversion through the

origin, and an essentially perfect reconstruction is obtained.

Repeated application of the algorithm with many different

random starts all converged to the correct object.

The second experiment mimics the symmetry ambiguity of

the molecular alignment mechanism proposed by Spence et al.

(2005). A non-negative three-dimensional density was gener-

ated by placing 25 unit ‘atoms’ at random positions within a

103 cube of zeros. After applying a low-pass filter, the resulting

density had a support on a 123 cube and is shown in the top

row of Fig. 4. The object was embedded on a 323 grid and its

diffraction pattern calculated, also on a 323 grid, as well as its

averages with respect to groups of order jGj ¼ 2 and jGj ¼ 4

generated by � rotations about axes along the sampling grid.

When combined with the Friedel symmetry i of real-valued

objects, the intensity data thus had a symmetry group hi;Gi

whose order ranged from 2 (no averaging) to 8 (three

orthogonal � rotations). The latter, together with the choice of

support, represents a marginal case, jS� Sj=jSj ¼ 8, and

therefore by (4) we obtain � ¼ 1. Without additional

constraints, the reconstruction may not be unique and, in any

case, will be impossible in the presence of noise. As a check

that the intensity was sampled at sufficient density even in

this case, we note that the number of independent data,

ð323=8Þ ¼ 4096, exceeds the number of independent auto-

correlation coefficients, ð1� 123Þ ¼ 1728, by a ratio of 	 2:4.

Reconstructions were obtained with the difference-map

algorithm for the different data sets. For the cases jGj< 4

(�> 1), the reconstructions were consistently successful

(unique). Since the case jGj ¼ 4 is marginal (� ¼ 1), an

additional constraint in the form of positivity was included in

the reconstruction algorithm and this consistently produced

the correct solution. Reconstructions with jGj ¼ 4 and no

positivity constraint converged to incorrect solutions, as

expected. Fig. 5 shows the difference-map error metric k�k
versus iteration for the four different cases. The corresponding

reconstructions are compared with the correct object in Fig. 4

and it is seen that they are correct in the first three cases and

incorrect in the fourth. Convergence is rapid for the most

overdetermined case and slows as the order of the symmetry-

averaging increases. Small values of k�k are ultimately

obtained in all cases. For the marginal case (jGj ¼ 4) without

positivity, convergence is relatively rapid since the algorithm

can quickly find one of a multitude of (non-unique) solutions.

This example emphasizes the essential role of direct-space

constraints in addition to support (e.g. positivity) for the

scheme proposed by Spence et al. (2005).

5. Discussion

Although the phase-retrieval problem in macromolecular

crystallography is underdetermined, requiring additional

information (isomorphous derivatives, anomalous scattering,

noncrystallographic symmetry) or constraints (positivity,

atomicity) for its solution, the problem for continuous

diffraction from single particles is known to be over-

determined (Millane, 1996; Miao et al., 1998). The work

described here extends the latter results to quantitatively

describe redundancy for general support (molecular

envelope) shapes. Redundancy, as quantified by the constraint

ratio �, increases as the support shape moves away from being

convex and centrosymmetric. If the measured diffraction

pattern is averaged over a discrete group of symmetries, which

can occur when the specimen contains molecules that adopt a

finite number of different orientations, then the loss of infor-

mation due to the averaging is offset against the redundancy

associated with the support. This relationship is made precise
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Figure 5
Difference-map error metric k�k versus iteration for the three-dimensional reconstructions with increasing symmetry averaging. The corresponding
reconstructions are shown in Fig. 4.



in terms of the support and the symmetry group, giving

conditions for uniqueness. For the supports expected in

protein crystallography, less than fourfold or eightfold

symmetry will be tolerated, depending on whether or not the

group includes inversion through the origin. Additional a

priori information will relax these requirements.

An implementation of the difference-map reconstruction

algorithm that incorporates a projection operator onto the set

of symmetry-averaged diffraction intensities is developed.

Application of this algorithm to small numerical problems

without noise leads to unique solutions. This supports the

uniqueness arguments and the algorithm is a practical tool for

determining structures from such data. In particular, this

indicates that data collected from the laser alignment scheme

proposed by Spence et al. (2005) should be sufficient to

determine protein structures with minimal additional a priori

information.

The constraint ratio � supersedes previous measures of

redundancy for the phase problem with continuous data.

Earlier work by Millane (1996), specialized for cuboid

supports, gave the same dimensionality dependence but was

off by a factor of 2. Miao et al. (1998) introduced the ‘over-

sampling ratio’ � as, effectively, the number of intensity

samples divided by the size of the object as measured in pixels.

This combines in one number the redundancy intrinsic to the

object support, �, with the degree to which the number of

intensity samples exceed the sampling theorem minimum. In

the case of low-noise data, where sampling on grids finer than

the sampling theorem minimum does not add information, the

value of � is misleading in that a large value does not imply the

reconstruction will be any easier.

The problem addressed in this paper is related to other

problems in crystallography where averaged diffraction data

are measured. In particular, it is closely related to fiber

diffraction analysis where, as a result of random rotations of

the (oriented) scattering objects about an axis, one measures

the cylindrical average of the diffracted intensity (Millane,

2001). This corresponds to the action of a continuous rotation

group in the formulation presented here. Despite the infinite

order of the continuous group, fiber diffraction problems are

quite tractable for the following reasons. First, in the case of

polycrystalline fibers where crystallites are randomly rotated,

the continuous group acts on sampled diffraction data so that

at finite resolution it effectively reduces to a discrete group of

finite order. Second, for noncrystalline fibers, where individual

molecules are randomly rotated, the molecules generally have

screw (helix) symmetry and at finite resolution the diffraction

data can be expanded in a finite set of basis functions and the

action of the continuous group again effectively reduces to

a discrete group of finite order. The order of the groups

encountered in fiber diffraction is modest, but is generally too

large for a unique solution from the diffraction data alone, and

augmentation of the data using multidimensional isomor-

phous replacement and/or molecular replacement is required

(Millane, 2001). However, in particular, the implications of

having access to continuous diffraction from noncrystalline

fibers for reducing the amount of ancillary data required has

been noted (see Section 6 of Millane, 1996). We also note that

the projection operator (13) is identical to the operations used

in density modification, molecular replacement and difference

Fourier synthesis in fiber diffraction analysis, where one has

estimates of the individual complex amplitudes and the

measured averaged intensity (Namba & Stubbs, 1987;

Baskaran & Millane, 1999; Millane, 2001).
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